Similar Figures

Similarity Transformations

What Are Similar Figures?

Two figures are *similar* if the meet both of the following criteria:

- The corresponding <u>sides are proportional</u>
- The corresponding <u>angles are congruent</u>

- *Dilatations are transformations that create similar figures.
- * The scale factor used (or what is sometimes called the similarity ratio), is represented by the variable k

Identifying the Scale Factor:

When given a pair of similar figures, the scale factor (*k*) can be determined by taking a <u>pair of corresponding sides</u> and organizing their measures in the following manner:

^{*} If the smaller triangle is the initial figure, and the enlarged triangle its image, then we can conclude that (k) = 2 (the image is two times the size of the initial).

Change in Perimeter (related to k):

If two figures are considered similar, the ratio of their perimeters will be equal to the scale factor: k

Ex.: If the scale factor used is $\frac{2}{1}$ (or x 2)

Then the <u>perimeter of the image will also double</u>.

Using the previous example:

Initial figure
$$P = 3 + 4 + 5$$
 Image $P = 6 + 8 + 10$ Change: $24 = 2$ = 12 = 24

Change in Area (related to k):

If two figures are considered similar, the ratio of their areas will be equal to the square of the scale factor: k^2

Ex.: If the scale factor used is
$$\frac{2}{1}$$
 (or x 2)

Then the area of the image will become 22 (or 4) times larger.

Using the previous example:

Initial Figure:
$$A = 3 \times 4$$
 Image: $A = 6 \times 8$ Change: $24 = 4$

$$= 6$$

$$= 24$$