Lines, Angles, and Triangles

Notes and Student Work

1) <u>Lines</u>:

Line: a continuous extent of length.

Line Segment: a portion of a line with two distinct endpoints.

Ray: a straight line that begins at a point and extends forever in one direction.

2) <u>Angles</u>:

Obtuse angle: measure is greater than 90°

<u>Right angle</u>: measure is equal to 90°

Acute angle: measure is less than 90°

<u>Continued</u>:

Straight angle:

measure is equal to 180°

Reflex angle:

measure is greater than 180°

<u>Continued</u>:

Full Angle:

measure is equal to 360°

Adjacent Angles:

Definition:

Examples:

3) Angle Relationships:

Complementary Angles:

Definition: two angles that have a sum of 90°

*The angles do not have to be together (non-adjacent)

Ex.:

Supplementary Angles:

Definition: two angles that have a sum of 180°

*The angles do not have to be together (non-adjacent)

<u>Vertically Opposite Angles (vertical angles)</u>:

- vertically opposite angles will always be <u>congruent</u> (equal in measure)
- these angles are formed by intersecting lines
- non-adjacent angles (opposite a shared vertex, but do not share a ray)

Parallel Lines Cut by a Transversal:

- **Corresponding**: congruent, non-adjacent, and appear on the same side of the transversal.
- **Alternate Interior**: congruent, non-adjacent, on opposite sides of the transversal, and lie inside the parallel lines.
- **Alternate Exterior**: congruent, non-adjacent, on opposite sides of the transversal, and lie outside the parallel lines.
- **Consecutive Interior** (same side interior): supplementary, non-adjacent, on the same side of the transversal, and lie inside the parallel lines.
- **Consecutive Exterior** (same side exterior): supplementary, non-adjacent, on the same side of the transversal, and lie outside the parallel lines.

Examples:

Examples:

4) <u>Triangles</u>:

When classifying a triangle, we must identify the type of triangle according to both the <u>side measures and interior angles</u>.

- a) <u>Types of triangles based on side measures</u>:
 - **Scalene:** all three sides of the triangle have different measures.
 - **Isosceles:** two congruent sides, but the third side has a different measure.
 - **Equilateral:** all three sides are congruent (an equilateral triangle can also be isosceles because it does have 2 sides that are congruent).

b) Types of triangles based on interior angles:

- Acute: all interior angles are less than 90°
- **Right:** one interior angle is equal to 90°
- **Obtuse:** one interior angle is greater than 90°

*<u>The sum of the interior angles of a triangle is always 180°</u>


```
right, scalene
```

acute, isosceles

acute, equilateral

*Add lines to show congruent sides, and any angle measures